

An Arc Welding Task Planning Method Based on The 42nd Chinese **Improved Non-dominated Sorting Genetic Algorithm** Control Conference Qingyi Wang, Yongkui Sun*, Qichao Tang, Lei Ma

School of Electrical Engineering, Southwest Jiaotong University, Chengdu 61000 E-mail: 2245504246@qq.com, yksun@swjtu.edu.cn

Characteristics of Task Planning for Complex **Component Dual Robot Collaborative Welding** >There are many kinds of welds in complex components, and their spatial distribution is very complex.

> Some welds have special welding process constraints, for example, collaborative synchronous arc welding and welding direction.

Problems of existing solutions

Paper ID: 0206

First group the welds and then plan the welding sequence.

- >Optimization of welding path for single robot welding.
- > Single optimization objective.

Solution : A Heuristic Task Planning Algorithm is Proposed.

> The optimization model of dual-robot collaborative welding task planning is established.

> An improved non-dominated sorting genetic algorithm II (INSGA-II) is proposed to plan weld path.

Task Planning Modeling

Strategy: the welding area be divided into exclusive and shared welding area. **Optimization Objectives:** the shortest no-load path and minimum working time. > Math model : $\min F = [D,T]$

s.t.
$$\begin{cases} \phi_1 : \alpha_i = \alpha_j, \beta_i = \beta_j, d_i = d_j = 1 & (i, j \in M) \\ \phi_2 : d_i = 1 & (i \in L) \end{cases}$$

D denotes the total no-load path of the two robots.

T denotes the working time of the dual-robot cooperative welding system. represents synchronous welding constraints. ϕ_1 ϕ_2 represents welding direction constraints.

Schematic diagram of welding area division

Task Planning Method—INSGA-II

> Improvement 1: three chromosomes coding strategy

The initial solution is constructed by using three chromosomes representing weld number, robot number and welding direction respectively. Improvement 2: adjustment operator

After each crossover or mutation, the R chromosome is used to detect whether the exclusive weld allocation met the exclusive welding constraints. D chromosome is used to detect whether the directional weld meets the welding direction constraint. Adjust the welds that do not meet the constraints.

Experiments Experimental Object

Task Planning Result Based on MATLAB

Conclusion

- > A task planning model is established with synchronous welding and welding direction as the constraints and dual optimization objectives of the shortest no-load path and minimum working time.
- > Three chromosomes coding strategy and adjustment operator are introduced to improve NSGA-II.
- > INSGA-II can plan weld paths meeting process constraints for two robots, and can get better Pareto front compared with NSGA-II, MOPSO and MOACO.

*This work is supported by the Sichuan Province Science and Technology Support Program (No.2020ZDZX0015).